Positive projectively flat manifolds are locally conformally flat-Kähler Hopf manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Inequalities on Locally Conformally Flat Manifolds

In this paper, we are interested in certain global geometric quantities associated to the Schouten tensor and their relationship in conformal geometry. For an oriented compact Riemannian manifold (M,g) of dimension n > 2, there is a sequence of geometric functionals arising naturally in conformal geometry, which were introduced by Viaclovsky in [29] as curvature integrals of Schouten tensor. If...

متن کامل

Locally conformally Kähler manifolds with potential

A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...

متن کامل

On Positive Solutions to Semi-linear Conformally Invariant Equations on Locally Conformally Flat Manifolds

In this paper we study the existence and compactness of positive solutions to a family of conformally invariant equations on closed locally conformally flat manifolds. The family of conformally covariant operators Pα were introduced via the scattering theory for Poincaré metrics associated with a conformal manifold (Mn, [g]). We prove that, on a closed and locally conformally flat manifold with...

متن کامل

The Scalar Curvature Deformation Equation on Locally Conformally Flat Manifolds

Abstract. We study the equation ∆gu− n−2 4(n−1)R(g)u+Ku p = 0 (1+ ζ ≤ p ≤ n+2 n−2 ) on locally conformally flat compact manifolds (M, g). We prove the following: (i) When the scalar curvature R(g) > 0 and the dimension n ≥ 4, under suitable conditions on K, all positive solutions u have uniform upper and lower bounds; (ii) When the scalar curvature R(g) ≡ 0 and n ≥ 5, under suitable conditions ...

متن کامل

A Fully Nonlinear Conformal Flow on Locally Conformally Flat Manifolds

We study a fully nonlinear flow for conformal metrics. The long-time existence and the sequential convergence of flow are established for locally conformally flat manifolds. As an application, we solve the σk-Yamabe problem for locally conformal flat manifolds when k 6= n/2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and Applied Mathematics Quarterly

سال: 2021

ISSN: ['1558-8599', '1558-8602']

DOI: https://doi.org/10.4310/pamq.2021.v17.n3.a13