Positive projectively flat manifolds are locally conformally flat-Kähler Hopf manifolds
نویسندگان
چکیده
منابع مشابه
Geometric Inequalities on Locally Conformally Flat Manifolds
In this paper, we are interested in certain global geometric quantities associated to the Schouten tensor and their relationship in conformal geometry. For an oriented compact Riemannian manifold (M,g) of dimension n > 2, there is a sequence of geometric functionals arising naturally in conformal geometry, which were introduced by Viaclovsky in [29] as curvature integrals of Schouten tensor. If...
متن کاملLocally conformally Kähler manifolds with potential
A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...
متن کاملOn Positive Solutions to Semi-linear Conformally Invariant Equations on Locally Conformally Flat Manifolds
In this paper we study the existence and compactness of positive solutions to a family of conformally invariant equations on closed locally conformally flat manifolds. The family of conformally covariant operators Pα were introduced via the scattering theory for Poincaré metrics associated with a conformal manifold (Mn, [g]). We prove that, on a closed and locally conformally flat manifold with...
متن کاملThe Scalar Curvature Deformation Equation on Locally Conformally Flat Manifolds
Abstract. We study the equation ∆gu− n−2 4(n−1)R(g)u+Ku p = 0 (1+ ζ ≤ p ≤ n+2 n−2 ) on locally conformally flat compact manifolds (M, g). We prove the following: (i) When the scalar curvature R(g) > 0 and the dimension n ≥ 4, under suitable conditions on K, all positive solutions u have uniform upper and lower bounds; (ii) When the scalar curvature R(g) ≡ 0 and n ≥ 5, under suitable conditions ...
متن کاملA Fully Nonlinear Conformal Flow on Locally Conformally Flat Manifolds
We study a fully nonlinear flow for conformal metrics. The long-time existence and the sequential convergence of flow are established for locally conformally flat manifolds. As an application, we solve the σk-Yamabe problem for locally conformal flat manifolds when k 6= n/2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and Applied Mathematics Quarterly
سال: 2021
ISSN: ['1558-8599', '1558-8602']
DOI: https://doi.org/10.4310/pamq.2021.v17.n3.a13